Given an integer n, return all distinct solutions to the n-queens puzzle.
DFS:
public class Solution {
public ArrayList<String[]> solveNQueens(int n) {
ArrayList<String[]> res = new ArrayList<String[]>();
int[] rows = new int[n];
solve(res, rows, 0);
return res;
}
private void solve(ArrayList<String[]> res, int[] rows, int row) {
if (row == rows.length) {
String[] tmp = new String[rows.length];
draw(rows, tmp);
res.add(tmp);
return;
}
for (int i = 0; i < rows.length; i++) {
rows[row] = i;
if (valid(rows, row)) {
solve(res, rows, row + 1);
}
}
}
private boolean valid(int[] rows, int row) {
for (int i = 0; i < row; i++) {
if (rows[i] == rows[row]) {
return false;
}
if (Math.abs(rows[row] - rows[i]) == Math.abs(row - i)) {
return false;
}
}
return true;
}
private void draw(int[] rows, String[] tmp) {
for (int i = 0; i < tmp.length; i++) {
StringBuilder cur = new StringBuilder();
int pos = rows[i];
for (int j = 0; j < pos; j++) {
cur.append('.');
}
cur.append('Q');
for (int j = pos + 1; j < tmp.length; j++) {
cur.append('.');
}
tmp[i] = cur.toString();
}
}
}
Follow up for N-Queens problem.
Now, instead outputting board configurations, return the total number of distinct solutions.

经典的递归问题。用一个cols[]数组,cols[i]: i代表第几列,cols[i]代表在第i列的行数。同时还要检查在当前列当前行和之前比较是否合法。
public class Solution {
//Time: O(n^n) Space: O(n)
private int num = 0;
public int totalNQueens(int n) {
int[] cols = new int[n];
Nqueen(cols, 0);
return num;
}
private void Nqueen(int[] cols, int col) {
if (col == cols.length) {
num++;
return;
}
for (int i = 0; i < cols.length; i++) {
cols[col] = i;
if (valid(cols, col)) {
Nqueen(cols, col + 1);
}
}
}
private boolean valid(int[] cols, int col) {
for (int i = 0; i < col; i++) {
if (cols[i] == cols[col]) {
return false;
}
if (Math.abs(cols[col] - cols[i]) == Math.abs(col - i)) {
return false;
}
}
return true;
}
}
No comments:
Post a Comment