Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.
For example, given the following triangle
[
[2],
[3,4],
[6,5,7],
[4,1,8,3]
]
The minimum path sum from top to bottom is 11 (i.e., 2 + 3 + 5 + 1 = 11).
Note:
Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.
Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.
类似一个滚动数组,做DP
public class Solution { //Time: O(n^2) Space: O(n) public int minimumTotal(List<List<Integer>> triangle) { if (triangle == null || triangle.size() == 0) { return 0; } int[] level = new int[triangle.size()]; for (int i = 0; i < triangle.size(); i++) { level[i] = triangle.get(triangle.size() - 1).get(i); } for (int i = triangle.size() - 2; i >= 0; i--) { for (int j = 0; j <= i; j++) { level[j] = Math.min(level[j] + triangle.get(i).get(j), level[j + 1] + triangle.get(i).get(j)); } } return level[0]; } }
No comments:
Post a Comment