Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.
For example, given the following triangle
[
[2],
[3,4],
[6,5,7],
[4,1,8,3]
]
The minimum path sum from top to bottom is 11 (i.e., 2 + 3 + 5 + 1 = 11).
Note:
Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.
Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.
类似一个滚动数组,做DP
public class Solution {
//Time: O(n^2) Space: O(n)
public int minimumTotal(List<List<Integer>> triangle) {
if (triangle == null || triangle.size() == 0) {
return 0;
}
int[] level = new int[triangle.size()];
for (int i = 0; i < triangle.size(); i++) {
level[i] = triangle.get(triangle.size() - 1).get(i);
}
for (int i = triangle.size() - 2; i >= 0; i--) {
for (int j = 0; j <= i; j++) {
level[j] = Math.min(level[j] + triangle.get(i).get(j),
level[j + 1] + triangle.get(i).get(j));
}
}
return level[0];
}
}
No comments:
Post a Comment