Suppose a sorted array is rotated at some pivot unknown to you beforehand.
(i.e., 0 1 2 4 5 6 7 might become 4 5 6 7 0 1 2).
You are given a target value to search. If found in the array return its index, otherwise return -1.
You may assume no duplicate exists in the array.
二分法,对于旋转的数组,至少有一半是已经sorted,首先判断那部分是sorted,再判断target在哪部分里。
public class Solution {
//Time: O(logn) Space: O(1)
public int search(int[] A, int target) {
if (A == null || A.length == 0) {
return -1;
}
int start = 0;
int end = A.length - 1;
while (start + 1 < end) {
int mid = start + (end - start) / 2;
if (A[mid] == target) {
return mid;
}
if (A[start] < A[mid]) {
if (A[start] <= target && target < A[mid]) { // left are sorted
end = mid;
} else {
start = mid;
}
} else {
if (A[mid] < target && target <= A[end]) { // right are sorted
start = mid;
} else {
end= mid;
}
}
}
if (A[start] == target) {
return start;
} else if (A[end] == target){
return end;
}
return -1;
}
}
Follow up for "Search in Rotated Sorted Array":
What if duplicates are allowed?
Would this affect the run-time complexity? How and why?
Write a function to determine if a given target is in the array.
public class Solution {
//Time: O(n) worst case. Space: O(1)
public boolean search(int[] A, int target) {
if (A == null || A.length == 0) {
return false;
}
int left = 0;
int right = A.length - 1;
while (left + 1 < right) {
int mid = left + (right - left) / 2;
if (A[mid] == target) {
return true;
} else if (A[left] < A[mid]) {
if (A[left] <= target && A[mid] > target) {
right = mid;
} else {
left = mid;
}
} else if (A[mid] < A[right]) {
if (A[mid] < target && target <= A[right]) {
left = mid;
} else {
right = mid;
}
} else {
if (A[left] == A[mid]) {
left++;
}
if (A[right] == A[mid]) {
right--;
}
}
}
if (A[left] == target || A[right] == target) {
return true;
}
return false;
}
}
No comments:
Post a Comment