Suppose a sorted array is rotated at some pivot unknown to you beforehand.
(i.e., 0 1 2 4 5 6 7 might become 4 5 6 7 0 1 2).
You are given a target value to search. If found in the array return its index, otherwise return -1.
You may assume no duplicate exists in the array.
二分法,对于旋转的数组,至少有一半是已经sorted,首先判断那部分是sorted,再判断target在哪部分里。
public class Solution { //Time: O(logn) Space: O(1) public int search(int[] A, int target) { if (A == null || A.length == 0) { return -1; } int start = 0; int end = A.length - 1; while (start + 1 < end) { int mid = start + (end - start) / 2; if (A[mid] == target) { return mid; } if (A[start] < A[mid]) { if (A[start] <= target && target < A[mid]) { // left are sorted end = mid; } else { start = mid; } } else { if (A[mid] < target && target <= A[end]) { // right are sorted start = mid; } else { end= mid; } } } if (A[start] == target) { return start; } else if (A[end] == target){ return end; } return -1; } }
Follow up for "Search in Rotated Sorted Array":
What if duplicates are allowed?
Would this affect the run-time complexity? How and why?
Write a function to determine if a given target is in the array.
public class Solution { //Time: O(n) worst case. Space: O(1) public boolean search(int[] A, int target) { if (A == null || A.length == 0) { return false; } int left = 0; int right = A.length - 1; while (left + 1 < right) { int mid = left + (right - left) / 2; if (A[mid] == target) { return true; } else if (A[left] < A[mid]) { if (A[left] <= target && A[mid] > target) { right = mid; } else { left = mid; } } else if (A[mid] < A[right]) { if (A[mid] < target && target <= A[right]) { left = mid; } else { right = mid; } } else { if (A[left] == A[mid]) { left++; } if (A[right] == A[mid]) { right--; } } } if (A[left] == target || A[right] == target) { return true; } return false; } }
No comments:
Post a Comment